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Summary

Several authors have proposed algorithms to detect
Mendelian errors in human genetic linkage data. Most
currently available methods use likelihood-based meth-
ods on multiplex family data to identify typing or ped-
igree errors. These algorithms cannot be applied in many
sib-pair collections, because of lack of parental-genotype
information. Nonetheless, misspecifying the relation-
ships between individuals has serious consequences for
sib-pair linkage studies: false relationships bias the sta-
tistics designed to identify linkage with disease pheno-
types. To test the hypothesis that two individuals are
sibs, we propose a test statistic based on the summation,
over a large number of genetic markers, of the number
of alleles shared identical by state by a pair of individ-
uals, for each marker. The test statistic has an approx-
imately normal distribution under the null hypothesis,
and extreme negative values correspond to nonsib pairs.
Power and significance studies show that the test statistic
calculated by use of 50 unlinked markers has 96%
power to detect half-sibs and has 100% power to detect
unrelated individuals as not full-sib pairs, with a 5%
false-positive rate. Furthermore, extreme positive values
of the test statistic identify sibs as MZ twins.

Introduction

Errors can enter linkage data sets during every step of
a genetic-mapping project: pedigree ascertainment, sam-
ple collection, sample processing, genotyping, and anal-
ysis. Errors may be identified by reviewing the output
from analysis programs such as UNKNOWN (Ott 1991)
or by manually inspecting the pedigree and genotype
data for a limited set of markers—a tedious and error-
prone process. Because of the complex and multifacto-
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rial nature of many of the diseases now being studied,
population samples are larger than ever, exacerbating
the problem of error detection. Therefore, specific, ac-
curate, and automated methods of error detection are
essential.

There are two types of genetic linkage–data errors to
consider: pedigree error and typing error. Pedigree errors
are systematic and affect all genotypes for an individual.
They generally involve misidentification of individuals
and relationships (Ott 1991). Examples include non-
paternity, unidentified adoption, and sample mix-ups.
Sporadic errors or typing errors include all other types
of errors, such as misreading of gels, data-entry error,
and mutations (Buetow 1991). The present paper will
concentrate on the detection of individuals causing ped-
igree errors.

Pedigree error is often detectable, since the incorrect
relationship will likely show genotypes not conforming
to Mendelian inheritance. Boehnke and Guo (1992), Ott
(1993), and Stringham and Boehnke (1996) have de-
veloped tests for the identification of genotypes causing
Mendelian inconsistencies. These tests use likelihood-
based methods on multiplex family data to identify typ-
ing or pedigree errors based on genotypes that are likely
to be incorrect. The algorithms cannot be applied in
many sib-pair collections, because of the lack of parental
genotype information.

The effects of errors in genetic data can be serious.
Errors will often inflate distances in genetic maps and
confound the ordering of polymorphic loci. They can
reduce the power to locate disease genes and can bias
the results of linkage-analysis statistics, which can lead
to incorrect localizations for disease genes. The most
common pedigree error is the assumption that sibs are
full sibs when in fact they are half-sibs. This type of
error decreases the observed number of shared alleles,
compared with the number of shared alleles expected
when the individuals are assumed to be full sibs. The
resulting affected-sib-pair test statistic will be biased,
making linkage more difficult to detect.

We propose the SibError algorithm, which uses only
sibship data, to identify both the existence of systematic
errors and the individual responsible for these errors.
The method distinguishes between full-sib pairs and
non–full-sib pairs such as half-sibs and unrelated indi-
viduals (Ehm and Wagner 1996).
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Table 1

Conditional Expectations, Mating Types, and Probabilities

Mating Type E(X dM � t )i i i
2E(X dM � t )i i i P(M � t )i i

aa # aa 1 1 4� pm m

aa # bb 1 1 2 2 4(� p ) �� pm m m m

aa # ab 3
4

5
8

3� 4p (1 � p )m m m

aa # bc 3
4

5
8

2 2� 2p [1 �� p � 2p (1 � p )]m m n n m m

ab # ab 5
8

1
2

2� (2p p )!m n m n

ab # ac 9
16

13
32 � 4p p (p � p )(1 � p � p )!m n m n m n m n

ab # cd 1
2

3
8

2� 2p p [1 � 2p p � 2(p � p )(1 � p � p ) �� p ]!m n m n m n m n m n k k

SOURCE.—Lange (1986).

Methods

The proposed test statistic is based on the summation,
over a large number of markers, of the identity-by-state
allele sharing for a pair of sibs. If this sum is significantly
less than the summation of the expected values of allele
sharing calculated by use of the population allele fre-
quencies, then the two individuals are presumed not to
be full sibs.

Let s1 and s2 each represent individuals genotyped for
n markers. To test the hypothesis H0 (s1 and s2 are full
sibs) versus H1 (s1 and s2 are not full sibs), let

1 if s and s share 2 alleles IBS at locus i1 2
1X � if s and s share 1 allele IBS at locus i .i 1 22{
0 if s and s share 0 alleles IBS at locus i1 2

Define . ThennY � � Xi�1 i

n

E(Y) � �E(X ) , (1)i
i�1

and

n n n n 2

2Var(Y) � �E(X ) � 2� � E(X X ) � �E(X ) .[ ]i i j i
i�1 i�1 j�i�1 i�1

(2)

The marker concordances, the Xis, are not identically
distributed and not independent unless the markers are
unlinked. The distribution of each Xi depends on the
allele-frequency distribution for the ith marker. To com-
pute the expected marker concordances, E(Xi), ,2E(X )i

and E(XiXj), we condition on parental mating type
(Lange 1986). Then

( ) ( )E(X ) � �E X d M � t P M � t , (3)i i i i i i
ti

2 2( ) ( )E(X ) � �E X d M � t P M � t , (4)i i i i i i
ti

and

( )E(X X ) � ��E X X d M � t , M � ti j i j i i j j
t ti j

( )P M � t , M � t (5)i i j j

are computed by summing over all possible mating types,
Mi, for marker i for one locus and over all pairs of mating
types, Mi and Mj, for two loci. We assume that the loci
are in linkage equilibrium, so that P (M � t , M �i i j

. Table 1 lists (1) the seven pos-t ) � P(M � t )P(M � t )j i i j j

sible mating types for locus i, for the parents of a sib
pair as specified by Lange (1986); (2) the conditional
expectations of Xi and , given each mating type; and2Xi

(3) the probabilities associated with each mating type,
. Note that pm is the frequency for allele m atP (M � t )i i

a given locus. Lange (1986) shows that the conditional
expectations and probabilities of each mating type can
be easily verified. Table 2 lists, for all possible pairs of
mating types for loci i and j for the parents of a sib pair,
the conditional expectations of XiXj, given each mating
type, for loci i and j. E(Y) is calculated by combining
equations (1) and (3), and Var(Y) is calculated by com-
bining equations (2), (3), (4), and (5).

Under H0 and the assumption that the Xis are inde-
pendent, has an approximate�Z � [Y � E (Y)] / Var (Y)
normal distribution. The null hypothesis should be re-
jected if the observed z statistic is less than the ath per-
centile of the standard normal distribution (�za). Note
that this test is one-sided, since increased sharing be-
tween s1 and s2 may be unlikely, but is not evidence for
the alternative hypothesis. Also note that, when s1 and
s2 are MZ twins, .Y � n
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Table 2

Conditional Expectations of Joint Mating Types, for Loci i and j: E(XX dM � t , M � t )i j i i j j

MATING

TYPE

FOR

LOCUS i

CONDITIONAL EXPECTATIONS FOR LOCI i AND j, GIVEN JOINT MATING TYPE

aa # aa aa # bb aa # ab aa # bc ab # ab ab # ac ab # cd

aa # aa 1

aa # bb 1 1

aa # ab 3
4

3
4

25 v v� �8 4 4

aa # bc 3
4

3
4

25 v v� �8 4 4
25 v v� �8 4 4

ab # ab 5
8

5
8

21 v v� �2 8 8
21 v v� �2 8 8

2 3 41 v 3v v v� � � �2 2 4 2 4

ab # ac 9
16

9
16

215 3v 3v� �32 16 16
215 3v 3v� �32 16 16

2 3 47 3v v v v� � � �16 8 2 4 8
2 3 413 3v 7v v v� � � �32 8 16 8 16

ab # cd 1
2

1
2

27 v v� �16 4 4
27 v v� �16 4 4

23 v v� �8 4 4
23 3v 3v� �8 8 8

21 v v� �8 2 2

Table 3

Power and Significance for 50 Unlinked Markers

NOMINAL a OBSERVED â

ˆ1 � b

Half-Sibs
Unrelated
Individuals

.05 .0547 .962 1.00

.01 .0108 .849 1.00

.005 .0057 .788 .999

.001 .0015 .628 .997

Results

We now evaluate the significance and power of the
test, given sets of 12–300 unlinked and linked markers,
apply the method to a sample of Mexican Americans
typed on a set of markers, and discuss the issue of mul-
tiple testing.

Significance and Power Studies

The significance, or false-positive rate, summarizes
how often the test statistic will falsely reject the null
hypothesis that the individuals tested are indeed full sibs.
The power measures how often the null hypothesis is
rejected correctly when the individuals tested are not full
sibs.

To estimate the significance, we generated 10,000 ped-
igrees each consisting of two parents and two sibs all
typed on a set of markers with given recombination frac-
tions between the markers (Ott 1989). The test statistic
was calculated and the P value was determined by use
of the standard normal distribution for each of the
10,000 tests. The proportion of P values less than the
nominal a was used as an estimate of the false-positive
rate, or observed .â

To estimate the power of the test, we generated 10,000
pedigrees under two models: (1) half-sibs and (2) un-
related individuals. Under the half-sib model, each ped-
igree consists of three parents and two children, in which
the children share a mother and have different fathers.
Under the unrelated-individual model, there are two in-
dependent nuclear families each with two parents and
one child, and the two children are tested as though they
were a sib pair. The test statistic was calculated and the
P value was determined by use of the standard normal
distribution for each of the 10,000 tests. The null hy-
pothesis that the sib pair consists of two full sibs was
rejected if the P value was less than the nominal a. The

frequency with which the null hypothesis was rejected
for the 10,000 tests was an estimate of the power
( ).ˆ1 � b

Table 3 lists the nominal a, observed , and powerâ

( ), both under the assumption that the pair are half-ˆ1 � b

sibs and under the assumption that the pair are unrelated
individuals, for a set of 50 unlinked ( ) markers.v � .5
An allele range of 2–19 alleles, with a mean of 9 alleles
and with varying frequencies, was assumed. The ob-
served matches the nominal a very closely. The powerâ

is .962 for half-sibs and 1.00 for unrelated individuals,
when .a � .05

To illustrate the minimum number of markers needed
for application of the test, we estimated the power nec-
essary to detect half-sibs and unrelated individuals, for
50, 40, 30, and 20 unlinked markers. Table 4 lists nom-
inal a and the power ( ) to detect half-sibs andˆ1 � b

unrelated individuals. The observed is not listed forâ

each sample of markers, but estimates correspond well
to nominal a. These power estimates indicate that the
power to detect half-sibs is reduced when !50 markers
are used. The power to detect unrelated individuals is
reduced when !30 markers are used.

To test the method with data that are likely to be
available for a given set of families, we investigated the
power and significance rates for (1) a full-genome scan,



184 Am. J. Hum. Genet. 62:181–188, 1998

Table 4

Power to Detect Half-Sibs and Unrelated Individuals, Given Sets of 20–50 Markers

NOMINAL a

ˆ1 � b

Half-Sibs Unrelated Individuals

50 Markers 40 Markers 30 Markers 20 Markers 50 Markers 40 Markers 30 Markers 20 Markers

.05 .962 .932 .831 .692 1.00 1.00 .998 .983

.01 .849 .745 .626 .404 1.00 .998 .990 .914

.005 .788 .650 .506 .267 .999 .997 .980 .842

.001 .628 .437 .275 .159 .997 .987 .929 .734

Table 5

Power and Significance for Low-Density Genome Scan

NOMINAL a OBSERVED â

ˆ1 � b

Half-Sibs
Unrelated
Individuals

.05 .0448 .995 1.00

.01 .0084 .958 1.00

.005 .0048 .916 1.00

.001 .0014 .753 1.00

(2) a low-density full-genome scan, and (3) partial-ge-
nome scan. Note that each of these situations included
linked markers and thus violated the assumption that
the Xis are independent.

To investigate the significance and power that are
characteristic of a low-density genome scan, a set of 100
markers with variable allele frequencies placed ∼35 cM
apart ( ) on 22 autosomal chromosomes wasv � .30
used. Table 5 lists the nominal a, observed , and powerâ

( ) to detect half-sibs and unrelated individuals. Ob-ˆ1 � b

served is similar to nominal a. The power to detectâ

half-sibs and unrelated individuals is high: .995 and 1.00
for .a � .05

Table 6 lists the nominal a, the observed , and theâ

power ( ) to detect half-sibs and unrelated individ-ˆ1 � b

uals, for markers characteristic of a full-genome scan.
The set consists of 300 markers that had variable allele
frequencies and that were placed ∼10 cM apart (v �

) on 22 autosomal chromosomes. Observed isˆ.10 a

slightly higher than nominal a (.0562 vs. .05), because
of the dependence of the Xis. The power to detect half-
sibs and unrelated individuals as nonsib pairs is very
high (1.00) when .a � .05

Given the positive results discussed above for data
generated during a low-density or full-genome scan, we
investigated the significance and power by using both a
set of 25 markers spaced 10 cM apart and a set of 12
markers spaced 21 cM apart ( and , re-v � .10 v � .20
spectively). These sets were characteristic of data gen-
erated for one chromosome. Table 7 lists the nominal
a, observed , and power ( ) to detect half-sibs andˆâ 1 � b

unrelated individual pairs as non–full-sib pairs. Again
the significance levels are slightly inflated (.075 vs. .05,
for 25 markers), because of the dependence of the mark-
ers, but the power to detect unrelated pairs is high (.995
for 25 markers, when ; and .814 for 12 mark-â � .075
ers, when ). The power to detect half-sib pairsâ � .0548
is acceptable (.741) for 25 markers but is low (.351) for
12 markers.

The scenarios described above for linked markers as-
sume that estimates of the map distances are error
free–that is, that the marker distances used to generate
the simulated sib-pair data are the same as those used

to calculate the SibError test statistic. In practice, map-
distance estimates are affected by pedigree and typing
errors (Ehm et al. 1996). To illustrate the effect that error
in map-distance estimates has on the significance and
power of the SibError test statistic, a set of 50 markers
with variable allele frequencies placed ∼10 cM apart
( ) on two autosomal chromosomes was simu-v � .10
lated. When values of equal to .05, .10 (no error), andv

.15 were used in calculating the SibError statistic, and
when a nominal a � .05 was assumed, the observed
values of were .0753, .0971, and .0971, respectively;â

and the corresponding power to detect half-sibs, for v

equal to .05, .10, and .15, was .803, .856, and .856,
respectively. Observed and power ( ) to detectˆâ 1 � b

half-sibs under the assumption that the map distances
were underestimated were less than those under the as-
sumption that there were no errors in the map distances.
When the map distances were inflated, there was no
effect on the significance and power. In practice, errors
in map-distance estimates usually result in inflated map
distances (Ehm et al. 1996), thus having a minimal effect
on the characteristics of the SibError test statistic.

Example

We applied the SibError algorithm to genotype data
generated on individuals in a nuclear family collected as
part of the American Diabetes Association GENNID
Study. The family consists of two parents (individuals
425 and 426) and nine offspring. SibError results for
four of the offspring (sibs 427–430) are listed in table
8. Like many of the families studied for complex dis-
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Table 6

Power and Significance for Full-Genome Scan

NOMINAL a OBSERVED â

ˆ1 � b

Half-Sibs
Unrelated
Individuals

.05 .0562 1.00 1.00

.01 .0132 1.00 1.00

.005 .0061 .999 1.00

.001 .0014 .999 1.00

Table 7

Power and Significance for Partial-Genome Scans

NOMINAL a

25 MARKERS AT 10 cM 12 MARKERS AT 20 cM

Observed â

ˆ1 � b

Observed â

ˆ1 � b

Half-Sibs Unrelated Individuals Half-Sibs Unrelated Individuals

.05 .075 .741 .995 .0548 .351 .814

.01 .0193 .532 .976 .009 .0995 .476

.005 .0104 .425 .953 .009 .0995 .476

.001 .0027 .231 .842 .0024 .0413 .304

eases, the parents are unavailable for genotyping. All
four offspring have been typed for 50 unlinked markers
spaced throughout the autosomal genome, although, be-
cause of laboratory error, not all typings are recorded.
Several markers show more than four alleles for the sib-
ship. Note that n is the number of markers with typings
for both sibs, Y is the observed sharing, E(Y) is the ex-
pected sharing, Var(Y) is the variance, and [Y �

is the test statistic. Each test that involves�E(Y)]/ Var(Y)
sib 430 results in a significant test statistic (at the .05
level), indicating that sib 430 is not a full sib of sibs
427–429. Note that testing all sib pairs in a sibship con-
stitutes multiple testing, which should be accounted for.

Multiple Testing

As illustrated in the example, the methodology can
lead to multiple tests for a sib in a large sibship. The
hypothesis test is designed to determine if a pair of in-
dividuals are full sibs. Since many families consist of
more than two sibs, fully testing a family involves the
calculation of the test statistic for each possible sib pair.
All tests on all of the possible sib pairs are nots(s � 1)2

independent but are conditionally independent, given
that they involve a particular sib (Hodge 1984). In the
previous example, there are four sibs. All tests involving
sib 427 (i.e., sib pairs 427 and 428, 427 and 429, and
427 and 430) are independent. Multiple tests can result
in an increased sibship false-positive rate. However, the
multiple tests performed on each sib provide additional
information that may increase the power to detect a
problem sib. For example, in a sibship of three sibs, if
one individual is not a full sib of the other two, then we

should expect a significant result when that individual
is tested against each of the other two sibs. However, if
only one of the two test results is significant, we are in
a quandary: is the significant result a false positive, or
is the nonsignificant result a false negative? In a sibship
of four sibs, three tests are performed on each individual.
If all three are significant, we can be very confident that
the individual is not a full sib of the other three. Even
if only two of the three tests are significant, we can still
be confident that the individual involved is not a full sib
of the others, since it is more likely that we have one
false-negative result rather than two false-positive re-
sults. Larger sibships allow more opportunities to detect
and identify a problem sib. We discuss below the issues
of significance and power in large sibships and suggest
a rejection scheme that results in increased power and
reduced false-positive rates in most sibships.

To accurately estimate the false-positive rate and
power associated with testing all sib pairs within a fam-
ily, we designed a simulation study. To estimate the sib-
ship significance, we generated 10,000 pedigrees each
consisting of two parents and 4–12 sibs all typed for 50
unlinked markers (Ott 1989). The test statistic was cal-
culated for each sib pair within the sibship and the P
value was determined by use of the standard normal
distribution. An individual was identified as not a full
sib of the remaining members of the sibship if ofs � 2
the tests involving that individual had P values lesss � 1
than the nominal value. (Requiring all tests to bes � 1
significant resulted in low power for large sibships, be-
cause of the large number of opportunities for a false
negative to occur.) Note that this scheme has power to
detect errors in pedigrees in which there are at least

opportunities for significant tests (with false pos-s � 2
itives being ignored) for each sib. The proportion of
times that an individual was identified as erroneous is
an estimate of the sibship false-positive rate, or observed

.â

To estimate the sibshipwide power of the test, we gen-
erated 10,000 pedigrees under two models: (1) one half-
sib and (2) two half-sibs. The one–half-sib model’s ped-
igree includes 1 half-sib and 3–12 full sibs, in which the
children all share a mother and in which the half-sib has
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Table 8

SibError Results for Family 218, with Parents 425 and 426

Family Sib Pair n Y E(Y) Var(Y) �[Y � E(Y)]/ Var (Y)

218 427 and 428 46 31.500 29.465 4.630 .946
218 427 and 429 47 33.000 30.088 4.735 1.338
218 427 and 430 46 15.000 29.465 4.630 �6.722*

218 428 and 429 49 32.000 31.438 4.923 .253
218 428 and 430 49 17.500 31.438 4.923 �6.282*

218 429 and 430 49 16.000 31.438 4.923 �6.958*

* .P � .05

Table 9

Significance and Power to Identify Errors within Large Sibships

NO. OF

SIBS

FULL-SIB FALSE-
POSITIVE RATE

ONE HALF-SIB

Power False-Positive Rate

4 .068 .987 .103
5 .021 .975 .018
6 .0087 .963 .0043
7 .0085 .956 .0011
8 .0034 .942 .00051
9 .0038 .931 .00024
10 .0017 .920 .000089
11 .0014 .912 .000010
12 .0005 .904 .000027

a father different from that of the other sibs. The
two–half-sibs model’s pedigree includes 2 sibs with one
father and 2–10 sibs with another father, with all chil-
dren having the same mother. The sibships were tested
as though the members were all sibs. All were typed for
50 unlinked markers. The test statistic was calculated
and the P value was determined by use of the standard
normal distribution for each sib pair, in all of the 10,000
pedigrees. The null hypothesis that a sib pair consists of
two sibs was rejected if the P value was less than the
nominal a, and an individual was identified as erroneous
if of the tests involving that individual were sig-s � 2
nificant. For the 10,000 tests, the frequency with which
other full sibs were identified as not full sibs was an
estimate of the power ( ). The frequency with whichˆ1 � b

the other full sibs were identified as erroneous is an es-
timate of the false-positive rate for this type of family.
Although other, more complex family structures may
occur, we chose these two simple models that encompass
many of the problems observed in sibships encountered
in real data.

Table 9 lists both the sibship false-positive rate under
the assumption that the sibship consists entirely of full
sibs and the sibship power and false-positive rate under
the assumption that the sibship consists of one half-sib
and full sibs. The single test rates are ands � 1 a � .05

. The sibship false-positive rate (under theˆ(1 � b) � .962
assumption that all sibs are full sibs) is less than the
single test rate in all cases except when there are four
sibs (.068). For the one–half-sib model, the sibship
power is 1.90 for all sibship sizes, and the false-positive
rate is less than the single test rate for all sibship sizes
except when there are four sibs (.103). Under the two-
half-sibs model, the power to detect a non–full sib is
somewhat less (.975 vs. .903, for 5 sibs; and .904 vs.
.778, for 12 sibs), and the false-positive rates are similar
(data not shown). When there are more than four sibs,
the rejection scheme proposed leads to high power to
detect half-sibs and to low false-positive rates.

Discussion

SibError detects pedigree errors by using genotypes
derived from sibs typed for x50 markers. SibError can

pinpoint the person who is not a full sib, in sibships
larger than two, and can identify MZ twins (under the
assumptions that there is no typing error, Y should be
equal to n). Significance studies show that the test sta-
tistic conforms to the normal distribution for unlinked
markers but that, because of the violation of the as-
sumption of the independence of the Xis, is slightlyâ

inflated for linked markers. Power to detect half-sibs as
not being full sibs is good, and power to detect unrelated
individuals as not being full sibs is excellent. Fewer un-
linked markers may be used, with some loss in power.
The test statistic can be applied to a large number of
linked markers such as a set collected as part of a low-
density or full-genome scan, with outstanding results. It
is not appropriate for smaller sets of tightly linked mark-
ers, since increases as v decreases. The test statistic canâ

be used for entire sibships by consideration of all pos-
sible tests. A rejection scheme that rejects full-sib status
when all the tests or all but one of the tests involving
that sib are significant provides a conservative test with
high power.

In using SibError, it is important that all typings avail-
able for each individual are used without prior exclusion
of those typings that contribute to Mendelian errors.
Because SibError uses information from all markers
typed for a sib pair, the removal of marker typings giving
obvious Mendelian errors may mask true pedigree er-
rors. Using unlinked markers gives the best power per
marker and is preferred, if it is available. If linked mark-
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ers must be used, then SibError requires map distances
that can be either estimated from the data or obtained
from public databases. On the basis of the results of the
SibError program, the pedigree should be altered and
analyzed again. When all pedigree changes have been
made, then the data can be checked for typing errors.
In order to maintain a false-positive rate !.05 and to
have high power for most of the pedigrees and marker
sets encountered, we recommend the use of a nominal

.a � .05
Göring and Ott (1995) have described an algorithm,

Relative, to compute the likelihood of multilocus (linked
and unlinked) genotype data observed for two individ-
uals, given a stated relationship. The posterior proba-
bility of the relationship is calculated by use of Bayes’s
theorem, and the relationship with the highest posterior
probability is the estimated relationship. A special case
of this algorithm distinguishes full-sib pairs from half-
sib and unrelated-individuals pairs. Results for power
and significance studies assessing the properties of Rel-
ative similar to those of the studies described above are
given in their paper. The studies assumed linked and
unlinked markers each with an allele-frequency distri-
bution of .32, .3, .2, .1, .05, .02, and .01. A total of
10,000 replicates were used to estimate the significance,
and 1,000 were used to estimate the power. In our ex-
perience, the allele-frequency distribution has a minimal
effect on power and significance estimates when SibError
is used (data not shown). Therefore, we compare Göring
and Ott’s results to ours, which assume a varying allele
distribution. Under the assumption that there are 50
unlinked markers and that the false positive rate is
.0002, which is obtained by use of Göring and Ott’s
rejection scheme, the power to detect unrelated individ-
uals by use of Relative is .999, and the power to detect
half-sibs is .650. With SibError, the power is .993 for
unrelated individuals and .437 for half-sibs. Under the
assumption that there are 25 unlinked markers and that
the false-positive rate is .0008, the power to detect un-
related individuals is .944 and .844 and the power to
detect half-sibs is .267 and .197, for Relative and
SibError, respectively. Finally, under the assumption that
there are 50 markers in linkage groups of two markers
with within each group and with be-v � .10 v � .50
tween groups and that the false-positive rate is .0004,
the power to detect unrelated individuals is .997 and
.736 and the power to detect half-sibs is .977 and .274,
for Relative and SibError, respectively.

Boehnke and Cox (1997) have described a likelihood-
ratio method (RELPAIR) to infer the true relationship
of a supposed sib pair. The method compares the mul-
tipoint probability of the marker data, conditional on
different genetic relationships, and infers the relation-
ship, given the data, that is most likely. Results of power
and significance studies that assess the properties of

RELPAIR and that are similar to those studies described
above are given in their paper. The studies assumed
linked markers each with an allele-frequency distribu-
tion of .25, .25, .25, and .25. A total of 10,000 replicates
were used to estimate the significance and power. We
compare Boehnke and Cox’s results to ours, which as-
sume a varying allele distribution. Under the assumption
that there are 50 markers spaced 10 cM apart and that
the false-positive rate is .086, which is obtained by use
of Boehnke and Cox’s rejection scheme, the power to
detect unrelated individuals is 1.00 for both methods,
and the power to detect half-sib pairs is .956 and .856,
for RELPAIR and SibError, respectively. Under the as-
sumption that there are 100 markers spaced 10 cM apart
and that the false-positive rate is .0191, the power to
detect unrelated individuals is 1.00 for both methods,
and the power to detect half-sibs is .990 and .903, for
RELPAIR and SibError, respectively. Under the assump-
tion that there are 20 markers spaced 20 cM apart and
that the false-positive rate is .162, the power to detect
unrelated individuals is .995 and .992 and the power to
detect half-sibs is .884 and .793, for RELPAIR and
SibError, respectively. Under the assumption that there
are 100 markers spaced 20 cM apart and that the false-
positive rate is .0090, the power to detect unrelated in-
dividuals is 1.00 for both methods, and the power to
detect half-sib pairs is .993 and .980, for RELPAIR and
SibError, respectively. Note that the table given in
Boehnke and Cox’s paper comparing SibError and REL-
PAIR used data generated by an earlier version of the
SibError algorithm, a version whose performance, when
linked markers are used, is inferior to that of the al-
gorithm described in the present paper.

Relative, RELPAIR, and SibError have several differ-
ences. The power to detect unrelated individuals and
half-sibs is higher for Relative, given the excessively
stringent a levels. The power for RELPAIR is slightly
higher in some cases but is similar in others. Relative
and RELPAIR allow one to distinguish between half-sib
pairs and unrelated pairs, which SibError does not do.
However, interpretation of the results from Relative and
RELPAIR can be difficult, since no test statistic is de-
fined. The SibError test statistic provides the flexibility
to define a false-positive rate that is acceptable for a
given situation. Simulation studies would be necessary
to do the same with Relative and RELPAIR. Further-
more, the issue of multiple testing is not addressed by
these latter two algorithms. For sibships having more
than four sibs, the rejection scheme proposed with the
SibError test statistic has power similar to or higher than
those of Relative and RELPAIR. Relative does not use
information on markers showing Mendelian errors for
the individuals tested, whereas RELPAIR and SibError
do. Therefore, to obtain information on 50 markers for
use by Relative, more markers may need to be typed, to
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ensure that there are 50 markers showing no Mendelian
errors. Furthermore, the evidence for pedigree errors
may be diluted by not utilizing markers with Mendelian
errors. Computation of the posterior probabilities in
Relative requires specification of prior probabilities,
which are not generally known. Relative does not spe-
cifically identify MZ twins, whereas SibError and REL-
PAIR do.

Other published methods of error detection (Ott
1993; Stringham and Boehnke 1996) that have been de-
veloped to identify genotypes responsible for Mendelian
errors consider one marker at a time. These methods
were designed for large, extended pedigrees, do not in-
tegrate information from multiple markers, and were not
intended to identify systematic errors.

Lathrop et al. (1983) proposed a model of pedigree
error, obtained maximum-likelihood estimates of error
parameters, and calculated posterior probabilities for the
possible true relationships in each family, conditional on
the putative relationships and marker data and using
parameter estimates. The probabilities were then used
to distinguish between pedigree and typing error, where
Mendelian inconsistencies had been observed. Although
the method appears to perform well despite having typ-
ings on only seven markers (see the example in the La-
throp et al. paper), it relies on typings from parents and
focuses on inconsistencies, neither of which is necessary
for the SibError test statistic to work. SibError addresses
all of these issues by using a nonparametric approach
that has been proved to work well.

Code Distribution

The SibError test statistic has been implemented for
two-generation pedigrees, in the C programming lan-
guage. The input files required are the same as those
required for the LINKAGE package. For specific instruc-
tions, please contact the first author (M.G.E.) by elec-
tronic mail (mge37216@glaxowellcome.com).
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